
A New Approach to Design Graphically Functional
Tests for Communication Services

Patrick Wacht, Thomas Eichelmann, Armin Lehmann, Ulrich Trick

Research Group for Telecommunication Networks, University of Applied Sciences
Frankfurt/Main, Germany

{wacht, eichelmann, lehmann, trick}@e-technik.org

Abstract—This paper presents a new concept of how a service

provider using any kind of Service Creation Environment (SCE)
can verify that a generated service meets the requirements of a
customer. This requires functional tests which are derived from a
finite state machine-based behaviour model being composed
from so-called modular finite state machines by a new
composition method. The derivation of the tests is fulfilled by the
usage of an adequate path finding algorithm. The following
execution of the generated tests is done automatically within a
Testing and Test Control Notation (TTCN-3) test framework.

Key words: Functional Testing; TTCN-3; Behaviour Model; Finite
State Machine

I. INTRODUCTION

In the near future, network operators and service providers
aim for Service Creation Environments (SCE) that enable fast,
easy and cost efficient provisioning of value added services.
Currently, the building of such SCEs has been done in several
research projects, as for instance in the TeamCom project [1;
2]. The TeamCom SCE offers a possibility for developers to
design value added services with the help of a graphical user
interface and the executable language BPEL (Business
Process Execution Language). After the design is fulfilled it is
analysed by a code generator and translated into the specific
service code. Subsequently, the service can be deployed on an
Application Server.

Current SCEs like the TeamCom SCE proved to work
properly. However, a very important aspect is usually
disregarded by SCEs: the integration of automated functional
tests to validate and verify the created value added services.

The enhancement of integrating functional tests will have
to be done, because the provider has to assure that the services
are executed properly and do not affect other running services
within the provider’s service environment. Also the
integration of testing procedures enables a service provider to
check if the built service meets the demands of a customer.

The aim of this paper is to show how testing procedures can
be automated. For this purpose, the ComGeneration [3]
project has been established that should provide a consistent
solution to support the life cycle of a service by simplifying
development, testing and provisioning of multimedia
communication services. This approach reduces the
expenditure of time and cost.

The paper is structured as follows: Section II presents the
overall concept of ComGeneration whereas Section III is
concerned with the current approach to describe customer’s

requirements and how to derive the behaviour model from the
requirements. Section IV gives an overview of the needed
components and mappings to TTCN-3 (Testing and Test
Control Notation) [4] for the planned tool chain. Section V
discusses the related concepts and works and Section VI
concludes the paper.

II. COMGENERATION CONCEPT

Before looking at the detailed issues about how functional
testing of value added services looks like, it is worthwhile
having a look at the concept of the ComGeneration approach.
Figure 1 gives an abstract overview.

Figure 1. ComGeneration Architecture

The shown architecture can be divided into two main paths:
The Service Development and the Test Development. In
between there are tasks that are relevant to both paths.

The initial task, which concerns both Service and Test
Development, is the definition of a “Service Description”.
This is a document that can be understood as a requirements
specification and is created by the service provider in
consultation with a customer. It contains all possible demands
a customer might have for a specific value added service.

After the “Service Description” is defined, both the
“Service Development” and the “Test Development” are
triggered in parallel. The “Service Development” part is
fulfilled by a certain SCE. For the ComGeneration project,
any SCE can be used to create a service automatically. An
exemplary SCE is the TeamCom Service Creation
Environment [2; 5]. The service creation within this SCE
works as follows: a service designer describes the business

process of the corresponding value added service through a
formal control logic based on BPEL. So that the modelling of
the business process can be done correctly, it requires the
usage of predefined communication building blocks which
cover the functionality of typical service aspects. This concept
of using elementary communication service components is a
key advantage of the approach because it hides the underlying
heterogeneous communication networks. Thus, the service
designer does not need any detailed knowledge of certain
communication protocols and is able to focus on the
application logic instead. As BPEL has not been developed for
control of real time communication services in heterogeneous
networks, a code generator respectively “Service Generator”
has been implemented to translate the business process
description into Java code. The generated code is based on the
Java APIs for Integrated Networks Service Logic Execution
Environment (JAIN SLEE) [6] architecture, as this technology
fulfils the necessity of communication services. The final step
of the approach is the deployment of the code on a specific
JAIN SLEE Application Server such as Mobicents [7].

In parallel with the “Service Development” process, the
“Test Development” process is initiated by a test developer.
First of all, the test developer has to interpret the “Service
Description” properly and also has to extract the relevant
service information for the test purpose. Afterwards, he has to
choose the service related characteristics out of a repository of
predefined modular finite state machines. These state
machines cover typical service characteristics like protocol
sequences for TCP (Transmission Control Protocol), SIP
(Session Initiation Protocol) or HTTP (Hypertext Transfer
Protocol). By composing the chosen predefined modular finite
state machines, the test developer creates a so-called
behaviour model, which describes the possible behaviour of a
value added service. Depending on the service’s complexity,
the behaviour model itself is also a more or less complex
finite state machine. If the behaviour model is complete, an
algorithm generates the service specific test cases by
identifying every possible path through the finite state
machine. After the generation is done, every identified test
case is converted to TTCN-3 [4] within the “Test Case
Generation” process. TTCN-3 is an abstract test scripting
language which was standardized by ETSI [8; 9; 10] and ITU-
T [11; 12] and supports the modularized creation of test
scenarios for message and procedure based systems. In the
ComGeneration approach, the execution of the generated
TTCN-3 test cases on the deployed service is done within a
TTCN-3 test framework.

One very significant aspect of this paper is on the one hand
side the way how the behaviour model is modelled by a test
developer from the content of the “Service Description”. On
the other hand side, the automatic generation of test cases
from the behaviour model and the following execution on the
System under Test (SUT) is the main focus. The mentioned
aspects should verify that a communication service meets the
requirements of a customer. The following Figure 2 shows the
relevant steps for the “Test Development” in detail.

Figure 2. Test Development Process

On the basis of the description, the behaviour model is
described by a finite state machine. Some important service
related parameters can be specified within the “Service
Description”. These parameters have to be integrated into the
behaviour model. In TTCN-3, parameters and their values are
defined as so-called TTCN-3 templates. This leads to the fact
that every parameter within the behaviour model has to be
transformed to a TTCN-3 template. An example for a relevant
parameter within the behaviour model could be the name of a
SIP instant message (e.g. “MESSAGE”). This could mean that
during the service flow such a message is expected to be sent,
maybe to a specific SIP User Agent. The information of
possible message structures used within the behaviour model
has to be available during the “Test Development” process. So,
a database with test data is required. In this database, many
possible test data records are predefined as TTCN-3 templates.
Predefined templates already exist in the database, even
before the behaviour model was created. Depending on which
finite modular state machines are used within the model, the
predefined templates are activated and integrated within the
test framework. The generated templates are completely new.
They are associated to the parameter inputs made by the test
developer. The last step of the “Test Development” process is
the testing of the service itself within the test framework.

III. SERVICE DESCRIPTION AND BEHAVIOUR MODEL

As depicted in the last section, the test developer has to
design a behaviour model based on the information he could
retrieve from the service description. Both the service
description and the model will be explained in the following.

A. Service Description

The aim of the service description is to deliver a complete
set of requirements from the view of a user which has to be
fulfilled by the communication service. A user can on the one
hand be a person or on the other hand be an external system.

For the ComGeneration project, a specific way of defining
a service description has been developed. It has been derived
from a standardised object oriented method and includes the
following steps:

1. Short description
2. Identification of the roles
3. Requirements specification

4. Enhanced requirements specification
5. Identification of the communication interfaces

The initial task is about writing a very short description of
the service’s functionality which mentions the elementary
usage of the service.

The short description is followed by the second step, the
identification of the roles or rather participants. Such roles,
where users are able to communicate with the service, can be
defined as views on the service. Regarding often used
protocols in communication services like HTTP or SIP, roles
which refer to these protocols could be a web browser for
HTTP and a softphone for SIP.

After the roles have been defined, the requirements
specification has to be established. Such a specification
contains significant cases that may occur when using the
communication service. Usually, the definition of these cases
requires the cooperation of the customer and the service
provider. A description of a case usually contains the
following components: user role, preconditions, target, post
conditions.

The relevant user role for the case is selected from the
identified service roles. The preconditions describe the
situation (e.g. ‘SIP URI entered’), which leads to the
designated upcoming situation. The target always relates to
the status of the role which has to show a reaction (e.g.
‘Softphone reachable’). Finally, the post conditions should
forecast the possible situations which can occur.

Once the requirements specification has been finalized,
some enhanced requirements are defined without the customer
in step four. Here, some specific information can be defined
such as the maximal length of SIP URI etc.

In the last step, the communication interfaces for the
service are defined which relate to the specified roles.

As the service description is created by human hand, it
might be ambiguous and error-prone. To reduce occurring
problems, the whole creation process is simplified and
standardized by providing the service provider and the
customer with a so-called “Requirements Catalogue”. Such a
catalogue contains predefined standards, restrictions,
requirements and possible roles. The selection of these
predefined aspects within the described five steps results in a
service description.

B. Behaviour Model

In order to do functional testing of a communication service,
a test developer has to know, how the service should behave
according to the specification. In the ComGeneration
approach, this knowledge can be retrieved from the service
description to build a behaviour model.

The short description within the service description delivers
the test developer the abstract overview of the service. The
identification of the roles and communication interfaces
enables him to choose the service-relevant modular finite state
machines from a repository. Eventually, the requirements
specifications and the enhanced requirements specification
represent the service behaviour. From these specifications, the
test developer learns how to compose the chosen modular

finite state machines to a more complex finite state machine,
the behaviour model. The composition of two or more
modular finite state machines is realised by a new concept
called the Transaction User (TU). The TU always acts as a
mediator between possible client and server roles. Hence,
every predefined modular finite state machine has interfaces
where the TU acts as a sender or receiver. The TU does not
contain any information about the implementation of the
service, but it allows the description of a service from the
view of the SUT. The following Figure 3 gives an example of
a composition of a two modular finite state machines,
HTTP_Server and SIP_UAC_nInvite.

Figure 3. Composition of modular finite state machines with TU

The composition describes a HTTP POST Request, which
contains a SIP URI (‘b@provider.de’) and a text (‘Hello B’).
When the POST Request is received by the HTTP Server of
the SIP Application Server, the TU is informed and the TU
instructs the SIP UAC (User Agent Client) with respect to the
service logic to send a SIP Request or rather a SIP MESSAGE
with the contents of the POST Request.

IV. COMPONENTS, MAPPING AND TOOLCHAIN

Before the mapping to TTCN-3 and the tool chain will be
explained, first the components, the so-called modular finite
state machines, are described.

A. Modular finite state machines

The modular finite state machines, which establish the basis
for the behaviour model, are predefined and reusable
components which are usually based on specific protocols
(SIP, TCP, HTTP) or categories (databases). The structures of
the state machines for the protocol are derived from the
particular protocol specification. The following Figure 4
shows an exemplary state machine.

Figure 4. Structure of the finite state machine SIP_UAS_Invite

Depending on the specification, each state machine can
have several inputs and outputs. These interfaces are used to
compose more state machines with each other and to enable
the building of the behaviour model.

The state machine SIP UAS_INVITE which was derived
from [13] describes the handling of an incoming SIP INVITE
message for an User Agent Server (UAS). Every incoming
and outgoing transition represents a message which either is
received by the UAS or sent. The possible responses, which
can be initiated by the User Agent Server, are defined as
outputs. Besides the relevant protocol specific outputs like the
SIP status codes (2xx, 3xx-6xx) and occurring transport errors,
there is also a so-called “AnyEvent” defined. This output can
be understood as a placeholder for any kind of message from
any protocol. This technique enables the composing of all
available state machines.

A test developer only knows about the available state
machines from specific protocols. His main task to build a
behaviour model is to handle the interfaces of the finite state
machines.

B. Mapping to TTCN-3

The test machine generates messages and sends them to the
system under test (SUT) or it checks the messages sent by
SUT and responds to those messages. With the messages sent
to the SUT, the test system tries to provoke errors on the SUT.
This requires the test machine to understand the messages
from the SUT and also provide test data that consist of
positive and negative cases. To support these tasks TTCN-3
defines some elements that are required to create tests. In
Table I, some of these elements are described.

The Test Case Generator (TCG) creates test cases from the
FSMs and translates them into TTCN-3 code. So the TCG
needs some knowledge about the TTCN-3 elements or
generates these elements by himself. For the mapping of the
elements from the TCG to TTCN-3 two concepts are
introduced, the Connectivity Concept and the FSM Concept.
To generate the required test cases the TCG needs to obtain
the information from both concepts. Each concept provides
other information for the TCG and the two concepts together
offer all the required information to generate the TTCN-3
code.

TABLE I. TTCN-3 ELEMENTS

TTCN-3 element Description
Type Definition Defined data types to describe the

exchange of data between test components
and SUT.

Port Definition

Communication between the test
components and the SUT is established by
connecting local ports.
e.g. SIP port, HTTP Port

Component Definition

Structur of the test components that
represent the client and server protocol-
specific endpoints
e.g. UAS SIP, HTTP Client

Test Case

Runs individual test components
Summarizes the test events

TTCN-3-Templates

Definition for the description of test data

Control Part

Describes the order and the conditions for
the execution of individual test cases

TTCN-3-Codecs and Test
 Adapter

Adaptation for the SUT
Converts TTCN-3 code in an
understandable format for the SUT

Verdict

Judgement (Pass, Fail, Inconclusive, error)

The FSM Concept is presented in Figure 5.

Figure 5. Finite State Machine Concept

From the FSM, different TTCN-3 test cases can be
generated. The FSM also describes in what order and under
what conditions the test cases are executed. From this
information, the TTCN-3 Control Part is generated. The FSM
represents only the positive "good" reactions of the service.
All other cases, which occur in TTCN-3, are defined as
invalid (failed). The TTCN-3 verdict can therefore also be
derived from the FSM approach.

The Connectivity Concept is shown in Figure 6.

Figure 6. Connectivity Concept

Also from this concept, information for the mapping to
TTCN-3 elements can be derived. The concepts are connected
through the Controlled Object (CO). A CO is assigned to the
FSM within the FSM concept. This CO holds information
about the used ports and timers.

The TCG supports different timers (protocol timer and
global timer). The protocol timers are pre-defined and belong
to the respective ports. Depending on the protocols or the
messages which are required by the test developer, the
associated protocol timers are automatically added to the tests.
The test developer also has the ability to define its own timers.
These timers are called global timers, because they are defined
and can be manipulated within the whole FSM.

The ports in the TCG map to the TTCN-3 ports. For all
supported protocols, the ports are predefined in the TCG. Also,
all possible protocol messages must be predefined within the
respective ports. The timers which are defined within the
protocol specifications are also added to the port definition.
The definition of the test data in TTCN-3 is done with the help
of templates. These TTCN-3 templates are generated by the
TCG. For this purpose the TCG uses so called Event
Conditions. The test developer uses these Event Conditions to
choose from pre-defined test data or to define its own test data.

The data types which are used are predefined and
correspond to the TTCN-3 Type Definitions. The ports used in
the TCG are assigned to the corresponding TTCN-3 codec and
TTCN-3 adapter.

C. Toolchain

The TCG generates the test cases and test data for TTCN-3
from the FSM which is created by the test developer. The
TCG is composed by several elements, the GUI, the FSM
Parser, the Connectivity Parser, the FSM Pathfinder and the
TTCN-3 Code Generator, see Figure 7. In order to model the
FSM in a simple manner, the test developer is supported by a
GUI. This GUI consists of several views, the FSM View and
the Connectivity View. In the FSM View, graphical FSM
states and transitions can be defined.

Figure 7. Tool chain

In the Connectivity View, ports, messages and timers are
added to the Controlled Object and test data is defined or
adjusted. Another element of the TCG is the parser. The
parser analyses the FSM and gathers the information needed
for the TTCN-3 code generation. All relevant test cases are
required for the SUT test. A test case represents a path from
initial state to end state within the FSM. This means that all
paths within the FSM are discovered by the pathfinder. From
each resulting path of the FSM a TTCN-3 test case is
generated. With all of the test cases and the information
obtained by the parser, a TTCN-3 code generator generates
the complete TTCN-3 test.

V. RELATED WORK

The approach to describe tests with finite state machines is
quite common. Conformiq [14] describes tests by UML state
diagrams, but the focus is not to describe the service from the
view of the SUT, but from the view of the test components.
Furthermore, there are no predefined state machines which
can be used to simplify and accelerate the modelling process.

A similar approach from Yuan [15] describes test case
generation from UML activity diagrams, but the main focus is

about testing Web Service compositions with the help of
TTCN-3. However, the functionality is quite limited, as only
HTTP is supported which enables Web Service composition.

VI. CONCLUSION

In this paper, we have introduced a new approach to
integrate automated functional testing within any SCE to
validate that a created value added service meets the
requirements of the customer who ordered the service.
Therefore, we developed a technique to create a behaviour
model for a service from predefined modular finite state
machines with the help of a certain concept, the Transaction
User. From the behaviour model, abstract test cases can be
derived by the usage of an efficient path finding algorithm.
The abstract test cases are then converted to executable test
cases in TTCN-3, a standardised scripting language used in
testing of communication services.

Further work should address the improvement of the path
finding algorithm and validation of the concept.

ACKNOWLEDGMENT

The research project ComGeneration providing the basis
for this publication was partially funded by the Federal
Ministry of Education and Research (BMBF) of the Federal
Republic of Germany under grand number 1724B09. The
authors of this publication are in charge of its content.

REFERENCES
[1] TeamCom project website:

http://www.ecs.fh-osnabrueck.de/teamcom.html
[2] A. Lehmann et al.: “TeamCom: A Service Creation Platform for Next

Generation Networks”, IEEE ICIW 2009, Venice/Mestre, Italy, 24-28
May 2009.

[3] ComGeneration project website:
http://www.ecs.fh-osnabrueck.de/27619.html

[4] ETSI website for the TTCN-3 standards:
http://www.etsi.org/WebSite/technologies/ttcn3.aspx

[5] T. Eichelmann et al.: ”Creation of value added services in NGN with
BPEL”, Proceedings of the Fourth Collaborative Research Symposium
on Security, E-learning, Internet and Networking (SEIN 2008),
Wrexham, United Kingdom, 5-9 November 2008.

[6] Sun Microsystems, Open Cloud, JSR-000240 Specification, Final
Release, "JAIN SLEE (JSLEE) 1.1", SUN, 2008.

[7] Mobicents Open Source JAIN SLEE Server, http://www.mobicents.org
[8] EG 201 873-1: Methods for Testing and Specification (MTS); The

Testing and Test Control Notation version 3; Part1: TTCN-3 Core
Language. ETSI, September 2008.

[9] EG 201 873-2: Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part2: TTCN-3 Tabular
presentation Format (TFT). ETSI, February 2007.

[10] EG 201 873-3: Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part3: TTCN-3 Graphical
presentation Format (GFT). ETSI, February 2007.

[11] Recommendation Z.140: The Tree and Tabular Combined Notation
version3 (TTCN-3): Core Language. ITU-T, July 2001.

[12] Recommendation Z.141: The Tree and Tabular Combined Notation
version3 (TTCN-3): Tabular Presentation Format. ITU-T, July 2001.

[13] J. Rosenberg et al. : RFC 3261 – SIP : Session Initiation Protocol.
IETF, June 2002.

[14] Conformiq website: http://www.conformiq.com/
[15] Quilu Yuan et al. : A Model Driven Approach Toward Business

Process Test Case Generation. IEEE, June 2008

